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LETTER TO THE EDITOR 

Hamiltonian formalism for reversible non-equilibrium fluids 
with heat flow 

B A Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, TN 37388, USA 

Received 5 March 1990 

Abstract. Extended fluid dynamics, where, while the total entropy is conserved the particle 
one is not, is shown to have a canonical Hamiltonian structure in the space of Clebsch 
potentials and a non-canonical Hamiltonian structure in the space of physical variables. 

In ideal compressible fluid dynamics there is no entropy exchange between the fluid 
particles. Thus, entropy is conserved and consequently the heat concept does not 
appear. This is expressed by the motion equation 

- U,,  = div(m)  (1) 

where U is the fluid velocity and U is the entropy density, (T = ps; p being the mass 
density and s the specific (=per unit mass) entropy. 

Recently, Sieniutycz and Berry (SB) [ l ]  proposed a generalisation of classical fluid 
dynamics based on extended thermodynamics of heat conducting fluids which are off, 
but not far off, Gibbs equilibrium. In addition to the basic variables of classical fluid 
dynamics {U, p, s}, there appears a new variable, j ,  the diffusive entropy flux; equation 
(1) changes into 

- U,,  = div( (+U + j )  

e = e b ,  U, i). 

e = cob, a) + g(P9 U)lil’/2P2 

(2) 

and the specific internal energy of the fluid now acquires j dependence: 

(3) 

In the case of small ljl, the first approximation to (3) is [l]: 

(4) 

and the total energy of the system becomes 

E =p-+p(e ,+  1Ul2 U ) + g -  til2 
2 2P 

where U = U ( x )  is an external potential. For the case of small ljl, SB proposed a 
Hamilton principle for the extended fluid dynamics (EFD), based on the Lagrangian [ 11 

2’= L+A[p,,+div(po)]+ y[a , ,+div(vu+j)]  (6a 1 
lu12 lit2 
2 2P 

L=p-+g- - - (e ,+  U) 
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where A and y are Lagrange multipliers. (As shown in [ l ] ,  ( 6 a )  is the Legendre 
transform of ( 5 ) . )  

In this letter I will show that the EFD is a Hamiltonian system and, also, that this 
conclusion remains true when one considers the case of arbitrary dependence of e on 
thermal variables and not only for the {small I j l }  case (4). 

The Euler-Lagrange equations for the Lagrangian 2' ( 6 )  are: 

U = V ( A ) + p - ' a V (  y )  ( 7 a )  

I =  g - ' P v ( Y )  ( 7 b )  

-A.! = (WO),, + U +  ( u * V ) ( A )  - I U I 2 / 2 - ( g p - ' ) , , l j l 2 / 2  ( 8 a )  

- p,l = div( p u )  ( 8 b )  

It is straightforward to check that ( 8 )  is a canonical Hamiltonian system: it can be 
written in the form 

- ( A ,  p, 7 ,  B'(Sh/GA, ShlSp, ShISy, GhlSu)'  (9) 
where 

and h is the result of substitution into the total energy E ( 5 )  of U and j expressed 
through the constrained relations ( 7 ) .  Introducing 

M : = p u = p V ( A ) + a V ( y )  ( 1 l a )  

J := g j  = pV( y )  ( 1 l b )  

we can find, similar to the case of compressible fluid dynamics in [ 2 ] ,  a non-canonical 
Hamiltonian structure in the space {M, J, p, a}  of physical variables for which the 
Clebsch map ( 1  1 )  is a Hamiltonian (=canonical) map with respect to the canonical 
Hamiltonian structure ( 1 0 ) :  the motion equations in the physical space can be put into 
the form 

-(M, J, p, B 2 ( S A / G M ,  SA/GJ, S H / S p ,  SRISa)' ( 1 2 )  
where 

MP JP P C  

a, = a/ax, ,  where x,,  1 s (Y d m, are Euclidean coordinates in W", and 

A = - + p ( e , +  MI2 U)+-. PI2 
2P 2gP 
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The matrix B2 ( 1 3 )  is Hamiltonian since it is naturally associated [ 3 ,  chapter 81 with 
the dual space of the semidirect sum Lie algebra 

[ X I ,  X'I 
[ X I ,  Y 2 ] - [ X 2 ,  Y ' ]  
- X 2 ( a 1 )  + EY'(b2)  - 

XI(  b 2 )  - X 2 (  b ' )  

x',x2, Y ' ,  Y 2 € 9  a ' ,  a', b',  b2E V 

where 9 is a Lie algebra acting on V, and the matrix B2 ( 1 3 )  is the particular case of 
( 1 5 )  when E = 1 and 

9 = {vector fields on R m }  v = C"(R"). (16)  

Notice that if we exchange the entropy density variable U for the specific entropy 
variable s = a l p ,  the Hamiltonian matrix B2 becomes 

MP JP P S 

M, MPa, +a,M, ~ ~ 8 ,  ++J,  paa 

S 8,s P - I a p P  0 0 

J ,  J,a,+a,J, 0 0 Paup-' -'*I (17)  
B3 =[ P a,P 0 0 0 

which is no longer linear in its variables: this is similar to the case of the superfluid 
irrotational helium-4 [4] but very dissimilar from the case of the standard fluid dynamics 
[2 ,5,61.  

Finally, transforming the Hamiltonian matrix B2 ( 1 3 )  into the space with the 
variables {M, i, p, U } ,  where 

( 1 8 )  
g 
P 

i = - j = J / p  

is the thermal momentum, we obtain the affine Hamiltonian matrix 

M P  'P P O  

dPU E a P  

which also serves magnetohydrodynamics in the A representation [ 2 , 7 ] .  (The matrix 
B4 is a particular one-dimensional Abelian case of the spin-glass Hamiltonian matrix 
in [ 8 ] . )  This matrix services the case of the most general non-equilibrium reversible 
fluids, when the total energy of the system is given by the formula 

IMl' 
2P 

H =-+pU+pe(p ,  U, i )  

where e, the specific internal energy, is an arbitrary function of p, U and i, with the 
Gibbs relation [ l ]  

d ( p e )  = dp + T d u + j .  d i  (21 1 
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with p and T being non-equilibrium chemical potential and temperature, respectively. 
The motion equations of EFD, generated by the Hamiltonian matrix B4 (19) and the 
Hamiltonian H (20) are: 

- Ma,, = ( n a p  + aapf ' ) , ,  + PVa (22a) 

- i , , , = ( v . i +  T ) , a + u p ( i a , p - i , , a )  

- p , ,  = div(pu) 

- a,, = div(cro + j )  

where 

nap = P-'M,M, + iajp (23) 

is the stress tensor, and 

P = pp + a T  -pe (24) 

is the pressure. In terms of the fluid velocity U, one then has 

- U a , r =  upUa,p+p-lp,a+ U,, +p-'(Lj,),p. (25) 

The following remarks can be made. 
(a )  For the general EFD system (22), one also has a Hamilton principle with the 

Lagrangian 2 (6a),  where the Lagrangian L is now given, instead of formula (6b), 
by the formula 

(26) 

and one still has the canonical Hamiltonian system (9),  (10). These facts follow from 
the general recipes in [7] applied to the intermediate Hamiltonian matrix (13), or can 
be easily checked directly. 

(b)  Deleting the i (respectively J)  row and columns from the matrix B4 (19) 
(respectively B2 (13)) one gets the Hamiltonian matrix of classical fluid dynamics. 
The inverse procedure, of i (respectively J)  extensions of numerous Hamiltonian 
matrices of ideal continuous systems, allows one to incorporate reversible non- 
equilibrium processes into a great variety of known continuous Hamiltonian 
systems, all of which neglect diffusion of entropy (and other quantities). 

L=p-++j - i -p (e+U)  lU12 
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